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Role of residual stress field interaction 
in strengthening of particulate-reinforced 
composites 
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A quantitative analysis was conducted on the effect of residual thermoelastic stress 
concentrations on the strength of particle-reinforced brittle matrix systems. The analysis is 
derived from the stress intensity factor for a periodic array of coplanar cracks emanating from 
the matrix-particle interface. It is shown that the major drop in strength occurs at smaller 
volume fractions of second phase where the residual stress field interaction effects are 
minimal. The effect of volume fraction on strength becomes important at larger volume 

fractions (normally above 1 0-1 5%). The theory is compared with experimental measurements 
of strength for glass and alumina matrix composites as a function of the particle volume 
fraction, its size, and thermal mismatch A~. 

1. Introduct ion 
The cracking that occurs around second-phase par- 
ticles due to thermal expansion mismatch between the 
matrix and particulate phase has received much ex- 
perimental and theoretical attention over the last two 
decades [1-4]. Whenever a multiphase material ex- 
periences processing at elevated temperatures, the 
differences in the thermal expansion and the elastic 
constants of the constituent phases result in residual 
stresses upon cooling to room temperature [5]. These 
residual thermoelastic micromechanical stresses have 
always been of interest from both the strengthening 
and the strength-reducing perspectives. Experiments 
have shown that strengthening normally occurs when 
A ~  (~-0~ m - 0 ~ p ,  0~ m and % being the thermal ex- 
pansion coefficients of the matrix and particle, respect- 
ively) approaches zero, or exhibits small negative 
values [6-8]. Weakening, on the other hand, inva- 
riably occurs in the systems of positive As and the 
extent of weakening was found to be directly related to 
the particle size and the level of As [9, 10]. Based on 
an energy balance approach, Wang and Stevens [11] 
have shown that there is a critical volume fraction of 
zirconia addition in alumina which leads to crack link- 
up or coalescence. Similarly, Miyata et al. [9] have 
shown a consistent reduction of the strength of glass- 
matrix composites with increase of As. No reduction 
of strength.was observed only in systems with Arz = 0. 
The strong effect of A~ on strength and the existence 
of a critical volume fraction at which a sharp reduc- 
tion in strength occurs suggest that the residual stress 
field interaction between adjacent particles may play 
an important role. 

The aim of the current paper is to develop a quanti- 
tative analysis of the problem, based on crack-tip 
stress field interaction between the neighbouring 

0022-2461 �9 1992 Chapman & Hall 

cracks emanating from the particle matrix interface. 
For the present analysis a model system is chosen 
which consists of spherical particles uniformly 
distributed in a brittle matrix of higher thermal 
expansion. 

2. Stress field interact ion ef fects 
Before discussing the crack-tip stress field interaction 
effects in a brittle matrix containing a large number of 
particles under residual stress, it is considered appro- 
priate to first examine the case of a brittle matrix 
containing a single isolated particle. Also, it will be 
assumed that the particle is of a spherical shape with 
an annular flaw of length s emanating from the 
particle-matrix interface (Fig. lb). When an external 
stress (Ya is applied at infinity, the strength of such a 
solid can be calculated from the expression [12] 

1 (  nyE ~I/2-- A P ~  (1) 
cYs = qb c D[I + (s/R)](1 -- v2)/ 

where 3' is the fracture energy of the matrix, E is 
Young's modulus, v is the Poisson's ratio, D is the 
particle diameter (D = 2R), A is a constant, P is the 
residual thermoelastic stress which can be calculated 
from the well-known Selsing equation, and qbo and qb t 
are given by 

~o = 1 [1 + (s/R)] 2 

( 1 3 
x 1 + 411 + (s/R)] 2+ 41-1 + (s/R)] 4 
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Figure 1 (a) Coplanar  row of cracks perpendicular to the applied 
stress; (b) coplanar row of spherical particles with annular  cracks 
emanating from the particle-matrix interface. 

1 ) 1/2 

qb t = 1 - 1 [1 + (s/R)] 2 

1 1 1 
+ 211 + (s/R)] 3/2 [1 + (s/R)]2 ] 

In essence, Equation 1 predicts the condition under 
which a penny-shaped crack will extend under the 
combined action of applied stress, o-a, and a residual 
thermoelastic stress, P. It should be pointed out, 
however, that in developing Equation 1 it was as- 
sumed that both radial, o-r, and tangential, o-o, ther- 
moelastic stresses act in the direction to open the 
annular (penny) crack. If, on the other hand, only 
radial stress is assumed to act on the crack, qb t in 
Equation 1 reduces to 

( i  1,2 
~)'t = 1-- 1 I1 + (s/R)]ZJ (2) 

An important conclusion that can be inferred from 
Equation 2 is that, besides the influence of residual 
stress, there is a strong effect of particle size and 
annular flaw size on strength. Furthermore, Equation 
1 shows that at low volume fractions of second-phase 
particles, where the crack-tip stress field interaction 
effects are minimal, the strength of the composite is 
governed by the level of residual thermoelastic stress, 
the particle size and the inherent or annular flaw size. 

Let us now extend our analysis from a single par- 
ticle to a multiple-particle system as shown in Fig. lb. 
The ratio of the failure stress for the infinite row 
of particles, perpendicular to the applied stress, o'v 
(Fig. lb), to the failure stress for a single pore, o-c, may 
be obtained from the equation [13, 14] 

/ / t C ' ~  1/2 / 7~C'~ - 1/2 
o. M = O'c L ~ )  L t a n  2 b )  (3) 

where c is the total crack length and 2b the distance 
between the centres of adjacent particles. In the pre- 
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sent analysis, it will be assumed that each particle 
possesses an annular flaw of length, s, extending from 
the particle matrix interface. These annular flaws are 
taken to be an integral part of a total crack length. In 
order to incorporate the annular flaw size and the 
interparticle separation into the equation for strength, 
the following relationship must be established: 

c = R + s = R(1  + R )  (4) 

2b = 2R + 2s + d = 2R 1 + ~ + (5) 

2D(1 - V) 4l((1 - V) 

d = 3 V = 3 V (6) 

where V is the volume fraction of the second phase. 
On substituting Equations 4, 5 and 6 in Equation 3, 
the strength reduction ratio becomes 

O-M _ ( x[1 +(s/R)] )1/2 

0-r 2{1 + (s/~ + - [~  ~ V)/3V]} 
( rt[l+(s/R)] )-;:/2 

x tan2{ 1 + (s/R) + [2(1 - V)/3V]) 
(7) 

The ratio O-M/O-o is plotted as a function of particle 
volume fraction in Fig. 2. It is seen that the ratio O-M/O-r 
decreases very slowly with particle volume fraction for 
small siR ratios (s/l( = 1 to 0.001). For s/l( ratios 
larger than approximately 5-10, the strength of the 
solid containing a large number of interacting cracks 
drops very quickly, even at very small volume frac- 
tions of less than 10%. 

The equation for the strength of a solid containing 
annular cracks at distance d (Fig. lb) can be developed 
by combining Equations 1 and 7. Thus, substituting 
Equation 1 in Equation 7 and replacing o-c with o-s and 
O-M with O-F, this gives 

o-v = D[1 + (sIR)J(1 - v) 2 - A P  

( rc[l +(s/R)] )1/2 
x 2{1 + (s/l() + [2(1 - V)/3V]} 

( n[1 +(s/R)] )-1/2 
• tan2{1 + (s/R) + [2(1 - V)/3VJ} 

(8) 
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Figure 2 Predicted variation of strength (using Equation 7) with 
particle volume fraction and siR ratio. 
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Figure 3 Change of strength with particle volume fraction for a 
random array of particles having thermal expansion coefficient 
smaller than that of the matrix. All values for strength were 
calculated using A = 0.1, particles size of 300/am, and varying 
residual stress from P ~0 to P = 196 MPa. The temperature 
change was assumed to be AT = 600~ 

Fig. 3 illustrates the change of fracture strength (c~v) 
with particle volume fraction for a given siR. As 
expected, there is a weak dependence of particle vol- 
ume fraction on strength for small s/R (s/R < 0.1), and 
a much stronger effect at large siR. A sharp drop of 
strength at low volume fractions and at high sir ratios 
suggests that the residual stress generated by the 
thermal mismatch and/or the sir ratio plays a much 
more important role in controlling the strength of a 
composite than the crack-tip stress field interaction of 
the neighbouring cracks. 

So far our discussion has been concentrated on the 
effect of the particle volume fraction and sir ratio on 
strength, assuming no change of particle radius. How- 
ever, Equation 8 shows a strong dependence of 
strength on particle size (Fig. 4). It is clear that the 
particle size, along with s/R ratio, plays the dominant 
role in controlling the strength response of a com- 
posite, particularly at lower particle volume fractions. 

3. Discussion 
It is now well accepted that second-phase particles in a 
brittle matrix of different thermal and elastic proper- 
ties can serve as fracture origins. The residual thermal 
stress fields developed on cooling from the fabrication 
temperature are expected to mutually interact, leading 

to a crack-tip stress field intensification and eventual 
crack extension. According to Equation 8, the strength 
of a solid containing a random array of spherical 
particles depends on the magnitude of thermal mis- 
match (As), the temperature drop (AT), the particle 
size and its volume fraction, and the annular flaw-size 
to particle-size ratio. It is interesting to note from 
Equation 8 that the largest drop in strength occurs at 
low particle volume fractions ( < 5 %) where the crack- 
tip stress field interaction effects are minimal. Almost 
no variation of strength occurs at higher volume 
fractions ( >  10%) where the stress-field interaction 
effects are expected to be the highest. Fig. 5 shows the 
comparison between calculated and measured change 
of strength of a glass matrix containing 300 gm size 
glass beads to varying thermal expansion. Remark- 
ably good correlation indicates that the stress inter- 
action effects play a minor role in controlling the 
strength response. For example, Fig. 5 shows that the 
largest drop in strength of over 70% occurs at small 
volume fractions of particles. Further increase in par- 
ticle volume fraction from 5 to 30% leads to an 
additional drop in strength of only 10-15%. 

In calculating the strength of the composite in 
Fig. 5, it was assumed that there is a change of sir 
ratio from 0.04, for a glass matrix of equal thermal 
expansion with that of the glass beads, to 25 for a glass 
matrix having a thermal expansion coefficient 5.7 
times larger than that of the glass beads [9]. The 
difference in thermal expansion coefficients between 
the matrix and particles may influence the strength 
behaviour of the composite in two ways; through the 
stress-field interaction effects, and through the genera- 
tion of radial cracks on cooling from the fabrication 
temperature. In the first case, the crack-tip stress fields 
of the adjacent particles interact to magnify the stress 
intensity factor so that the applied stress required to 
cause fracture is reduced. In the second case, the 
cracks are formed either prior to the external stress 
application or during stressing. Here, the cracks are 
not visible prior to stressing and can be detected only 
after fracture. The ultimate result of this interaction is 
crack linking and a drastic reduction in strength of the 
composite, Microcracking and crack linking are well 
known phenomena in two-phase systems [14, 15]. 
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Figure 4 Predicted variation of strength (using Equation 1) with 
particle size for a given s/R ratio. 
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Figure 5 Comparison between predicted (using Equation 8) and 
measured strength for glass matrices with different thermal 
expansion containing spherical glass particles (beads) of 300/am size 
[93. 

1 2 1 9  



In order to understand better the mechanism of 
crack extension and consequently the fracture behavi- 
our, it is necessary to find out whether the cracks are 
formed prior to the application of external load or 
during loading. Clearly, if the residual stresses are 
high, soon after the external load is applied the annu- 
lar crack-tip stress field will reach a critical value and 
crack extension will occur. The extent of crack propa- 
gation after initiation can be estimated using a crack- 
opening displacement concept [12]: 

~ ( E R A ~ A T )  2 
s = ( 1 -  v2)2K2 c - R (9) 

where s is the annular/radial flaw size and Klo is the 
fracture toughness of the matrix material. The import- 
ant result of Equation 9 is that there is a strong 
dependence of arrested crack length, s, on thermo- 
elastic strain, A~A T. Assuming no contribution from 
the kinetic energy of the crack, Equation 9 may be 
used to predict the change of strength with change of 
As by combining Equations 8 and 9. 

Fig. 6 shows the comparison between measured and 
predicted strength (from Equations 8 and 9) as a 
function of As for a glass matrix containing 300 ~tm 
size glass beads. It is clear from Fig. 6 that good 
agreement between predicted and measured values for 
strength is achieved at larger As, whereas at small As 
Equation 8 gives somewhat underestimated values for 
strength. It may also be noticed that  Equation 8 gives 
consistently lower values for strength than those ac- 
tually measured. This behaviour may suggest that the 
extent of crack propagation after initiation is con- 
trolled not only by the crack opening but also by 
microstructural features such as porosity and the 
particle-matrix interface. A quantitative analysis 
using Equations 8 and 9 shows that, for example, 
for a volume fraction of glass beads of 0.1 and 
As = 4 x 10 -6 ~ 1, the mean interparticle spacing is 
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Figure 6 Variation of strength as a function of thermal expansion 
mismatch Ac~, for a glass matrix containing spherical glass particles 
of 300 gm size and V = 0.1; (O) experimental, ( ) theoretical 
(Equation 8). 

* Often called the critical particle size for spontaneous cracking. 
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significantly larger than the crack length, s, while at 
higher As the length of an arrested crack is larger than 
the interparticle spacing. This means that the prob- 
ability of crack arrest by a neighbouring particle (or its 
interface) is smaller at lower As than at larger As, 
which appears to be consistent with the results pre- 
sented in Fig. 6. Experimental results on glass 
matrix-glass bead composites, used to test the present 
theory, have shown that severe cracking Occurred in 
all composites that contained glass particles of smaller 
thermal expansion [9]. However, in composites with a 
relatively small thermal mismatch (Acz = 1.8 
x 10 6 oC-1), the microcracks were observed only 

between closely spaced particles while all  other ran- 
domly distributed particles with larger interparticle 
spacings did not contain cracks after cooling. Also, 
coalescence of  microcracks was readily observed in 
composites of higher volume fraction of particles and 
in composites of smaller volume fractions, but only 
between the closely spaced particles. 

These observations are in agreement with the theor- 
etical prediction made in the present paper and serve 
as a confirmation that the residual thermoelastic 
stresses are of a short range and their interaction can 
influence the crack propagation behaviour only in 
composites with a large number of particles (high 
particle volume fractions) or in highly segregated com- 
posites. Perhaps the most important implication of the 
present theoretical analysis and the experimental res- 
ults cited is that the magnitude of the residual stresses 
plays the dominant role in controlling the strength 
response of the composite, rather than the crack-tip 
stress field interaction. In other words, in systems with 
high thermal expansion mismatch, the critical particle 
size for crack extension* will be small and cracking 
will occur on cooling from the fabrication temper- 
ature, prior to external stress application. In systems 
with lower thermal expansion mismatch, the critical 
particle size for crack extension will normally be large 
and microcracking will occur only during external 
stress application. In both cases, partial or nearly 
complete relaxation of residual stresses will occur. The 
resultant body will be free of residual stresses but will 
contain a large number of cracks. Clearly, the mechan- 
ical response of such solids will depend entirely on the 
number and size of these cracks. 

To further test the theory, Fig. 7 shows the change 
of strength of alumina matrix-partially stabilized 
zirconia composite with zirconia volume fraction at 
different zirconia particle sizes. As with the glass 
matrix glass particle composite discussed above, the 
effect of particle size on strength of the alumina- 
zirconia composite is relatively much stronger than 
the effect of zirconia particle volume fraction on 
strength. For example, an increase of zirconia particle 
size from 1.25 to 5.4 gm caused a drop in strength 
from ~ 550 to ~ 250 MPa, whereas an increase in 
zirconia volume fraction from ~ 2 to 20% caused a 
drop in strength of only 100 MPa. In calculating the 
strength variation with zirconia volume fraction in 
Fig. 7, a constant value for siR was assumed, i.e 
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s/R = 15. The residual stress responsible for fracture 
was assumed to be the thermoelastic stress generated 
due to the presence of a thermal mismatch of magni- 
tude P- -468  MPa. The transformation stress was 
assumed to be of lower magnitude and thus to exhibit 
a minor effect on the strength of the composite. 

4. Conclusions 
The analysis of the interactions between closely 
spaced cracks emanating from the particle matrix 
interface has established the conditions for crack lin- 
king prior to catastrophic fracture. Due to the short- 
range order interaction effect of the two coplanar 
cracks, crack linking occurs at large particle volume 
fractions (small interparticle spacings). At small vol- 
ume fractions where the interaction effects are mini- 
mal, the dominant factor affecting the strength re- 
sponse of a composite is the difference in thermal 
expansion coefficients between the matrix and partic- 
ulate phase, Acz. Crack extension may occur during 

external stress application due to the combined action 
of applied stress and residual thermal stress. At large 
Acz, however, radial/annular crack extension may oc- 
cur prior to external load application and the strength 
response of the solid will be controlled entirely by the 
large pre-existing (arrested) cracks. 

It is shown that the strength of two-phase parti- 
culate composites is governed by the thermal mis- 
match (As), the particle size, D, the ratio of flaw to 
particle size, s/R, and the particle volume fraction. 
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